skip to Main Content
Joining Forces For Continuous Operation

Joining Forces For Continuous Operation

How polymer knife-edge rollers are making maintenance-free conveyor belts and packaging systems possible, enhancing performance.

Article by igus.


Krones AG produces systems and machines for making, filling, and packaging beverages and liquid food. The industry never sleeps. So it is hardly surprising that Krones systems have to break their own speed records again and again. This becomes a problem when a part cannot withstand the pressure and there is no alternative that can perform better. That is why igus GmbH developed knife-edge rollers made of tribo-polymers for Krones, helping them achieve new records. In 2005, Krones faced a challenge with the Variopac Pro, a fully automatic all-round packaging system: the system’s performance had to be increased by 20 packs per minute. There was therefore an urgent need to change the conveyor belt deflection. Originally, metal rollers with needle roller bearings were used here, but they couldn’t meet the higher performance requirements and were cost-intensive. Looking for an alternative, Krones Design Engineer Jürgen Werner came upon igus GmbH products.

Full Article Available >> https://bit.ly/39VLJig

You might be interested:

Espirit Keeps The Success Flowing For Wet Design
A Strong Partner For Every Sawing Task
Big Saving Potential For The Gear Technology With The Liquid Tool
Cartesian, 6-AXIS And Scara?
A True Precise, Economical, Future-Oriented 4-AXIS

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

CONNECT WITH US:  LinkedIn, Facebook, Twitter

First Trading Day As Bystronic On SIX Swiss Exchange

First Trading Day As Bystronic On SIX Swiss Exchange

At the Annual General Meeting on April 21, 2021, the share-holders of Conzzeta AG (“Conzzeta”) approved the change of name to Bystronic AG (“Bystronic”). The name change is the result of the strategic realignment of the Conzzeta Group. The shares of Bystronic (ticker symbol: BYS) are being traded for the first time on SIX Swiss Exchange.

By pursuing its growth strategy, Bystronic aims to further expand its leading position as high-tech solutions provider for the sheet metal processing industry: New smart factory software solutions meet the growing demand for automation and digital processes and support customers with the networking of their manufacturing processes. The company intends to open up new fields of application, strengthen its position in the individual regions and increase its focus on services. As a result, Bystronic’s market share is to continue to grow organically, by means of strategic partnerships and based on targeted acquisitions.

As already communicated on occasion of the Capital Markets’ Day on November 25, 2020, Bystronic is aiming for an annual organic sales growth of five to eight percent in the medium term (baseline year: 2019). By the end of the strategy period (2025), revenues are thus projected to increase to approximately 1.3 billion Swiss francs. The company has also set itself a profitability target with an EBIT margin in excess of 12 percent. Thanks to a capital-efficient business model, a return on net operating assets in excess of 25 percent is to be achieved. The service business is to grow from 19 percent (2019) to 26 percent of total revenues by 2025.

“Today is a special day for Bystronic and all our employees. I am very proud of the entire Bystronic team and their commitment to implementing our ’Strategy 2025`. We look forward to demonstrating that Bystronic is a modern, sustainably managed and agile company, and we share this moment with our employees, customers, investors, partners, and other stakeholders,” said Alex Waser, CEO of Bystronic.

“On behalf of the entire Board of Directors, I would like to sincerely thank the Conzzeta team and all employees involved and congratulate them on the successful completion of our transformation – towards a company with a focus on high-tech solutions for the sheet metal processing industry. We all wish Bystronic a great start and, as a company now listed on SIX, continued success with the implementation of its ambitious growth strategy,”said Ernst Bärtschi, Chairman of the Board of Directors of Bystronic.

 

For other exclusive articles, visit www.equipment-news.com.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

 

Forming: Punching In The Third Dimension

Forming: Punching in the Third Dimension

Fitted with an intelligent punching head and the right tool, your punching machine will also demonstrate its talent for forming. Article by Vincent Tan, TRUMPF.

Your punching machine can do more than just punch. Fitted with an intelligent punching head and the right tool, your machine will also demonstrate its talent for forming. This allows you to fully process a great diversity of sophisticated components on one machine—and even burr-free if required. It is also efficient for small quantities as tool costs are low and setup times are short. 

The ability to produce burr-free sheet-metal parts directly on punching or punch laser machines saves you the time-consuming process of retrospectively removing the punching burr. This considerably reduces the throughput time, in particular for coated sheet metal and formed parts. Furthermore, the improved edge quality lowers the risk of injury when further processing the parts. 

Roller Deburring Tool

The roller deburring tool is mainly used for simple, large-surface contours. The punched edges are thus perfectly rounded off, which is a decisive advantage for visible edges in particular. A high-quality result is obtained with all of the sheet thickness ranges by adapting the roller contour to the modified burr and to the width of the separation gap.

Ball Deburring Tool

You can get an even better edge quality if you use the MultiShear slitting tool in addition. For shapes with contour radii of less than 20 mm, the deburring MultiTool is to be used. The ball deburring tool is suitable for smaller contours, holes and workpiece corners. Specially hardened balls press the punching burr into the base metal. In doing so, a chamfer is produced on the upper side of the part.  Thanks to the tapered punch head, deburring near formed areas is also possible.

Deburring MultiTool

TRUMPF’s deburring MultiTool, with its three embossing inserts in the die, excels on radii of less than 0.8 in in particular. The tool presses burrs flat in a single stroke or in nibbling mode, even in corners and small contours.

The MultiTool makes your machine more productive by integrating up to 10 different punches and dies into one tool. The strengths of the MultiTool are particularly notable in processing sheet metal parts with small punches of different sizes.

Benefits

  • Shorter production times through complete processing on one machine
  • Lower risk of injury
  • Deburring of all geometries, whether simple, complex, small or large.
  • Also for coated sheets and for parts with formed areas

To continue reading this article, head on over to our Ebook!

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Producing Precision Surface Finishes: Convergence Of Machining & Finishing

Long Tool Life In Series Production

Achieving Consistent Quality

Strategies For Successful Punching

ANCA Launches CIM3D V9 With Time-Saving And User-Friendly Enhancements

Efficiency and Speed Make Kencoa Aerospace Machining Top Notch

 

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

Bichamp Sees Strong Bandsaw Potential In Southeast Asia

Bichamp Sees Strong Bandsaw Potential in Southeast Asia

Vincent Chai of Bichamp Cutting Technology talks about the landscape for bandsaw products in Southeast Asia, the latest challenges facing manufacturers when it comes to cutting, and how they are helping customers improve their processes. Article by Stephen Las Marias.

Vincent Chai

Established since 2003 , Bichamp Cutting Technology (Hunan) Co. Ltd manufactures high-performance bandsaw blades. Based in Changsha in Hunan Province, China, the company—one of the leading bandsaw manufacturers worldwide—is the only bandsaw maker in China that is listed in the stock exchange.

The company manufactures blades in its latest advanced production equipment and facilities in Changsha, Hunan. Bichamp uses top global raw material components and currently have the biggest production capacity in China.

READ: Caring for Your Bandsaws

In an interview with Asia Pacific Metalworking Equipment News, Vincent Chai, Regional Sales Manager ASEAN at Bichamp Cutting Technology, talked about the landscape for bandsaw products in Southeast Asia, the latest challenges facing manufacturers when it comes to cutting, and how they are helping customers improve their processes.

WHAT OPPORTUNITIES ARE YOU SEEING IN SOUTHEAST ASIA?

Vincent Chai: The Southeast Asia market is not as big as China or Europe, or even Japan, but we can see that over the past decade, there has been consistent growth in this market. That means there is potential for further growth here—not to the extent of what you are seeing in North America or Europe—but it is still a reasonable market.

I would say that Bichamp now is in the same stage as the other players worldwide. We are providing sawing solutions, and we are growing our technical team in this region to better service our customers. One concern with Southeast Asia is that you need to work with the right distributors in each country, and assists them in building their customer base moving forward.

READ: Behringer Talks Asia Market, Latest Sawing Technology

Vietnam is now the fastest growing economy in Southeast Asia. Due to affordable labour and government incentives, investments are coming in more and more, especially from Japan, Singapore, they are setting up more factories and manufacturing here.

The automotive industry is also growing. Big automotive companies are setting up manufacturing plants here, as a duplicate of Thailand, and even Indonesia. I would say, maybe in five to 10 years’ time, we would see Vietnam overtake certain countries in ASEAN. As we know, Thailand is still the number one in automotive sector, followed by Indonesia.

WHAT TECHNOLOGY TRENDS ARE IMPACTING THE BANDSAW INDUSTRY?

VC: Bandsaws have been here for a few hundred years already. There are not too complicated in terms of investments in technology. The only thing is that we are now seeing different types of sawing application—from bandsaw, people are shifting to circular saws as an alternative, which we might be looking into this application in the future as we do see these kinds of trends moving toward circular saws. Of course, circular saws and bandsaws are two different things. They both have limitations—there are things bandsaws can do, which circular saw can’t, and vice versa.

It has been said that circular saws will take over bandsaws in the future. But I have been hearing this since I first started in the industry. And bandsaws are still moving up, and sales have been increasing. I don’t think there will be much difference for now but who would know what future lays ahead.

READ: FMI: ‘Energy Efficiency’— the Key Marketing Touchpoint of Bandsaw Machines Market Players

In circular saws, the limitation is the thickness of the size you can cut. At the moment, we would say that the most common size are below 200 mm in diameter; but with bandsaws, you can cut up a wide range of sizes and shapes. The range is unlimited; it depends on the type of machine you have. The bigger the machine, the bigger materials it can cut. In South East Asia, we don’t have very large cutting capacities compare to China.

But with circular saws, the bigger the machine you use, the higher costs you have. There are limited companies that would invest in this kind of big circular saws, unless they are steel manufacturers. If they produce steel, yes, I do see circular saws as big as 3m to 5m. But in the manufacturing industry, circular saws are used for machining parts, where you have consistent parts of, like, diameter 80, and you need thousands of pieces per month. Then you use circular saws—they are faster and cost effective. But if you are in an industry where you process multiple sizes to cut, and multiple materials, bandsaw is still the best.

WHAT ARE THE USUAL CHALLENGES YOUR CUSTOMERS EXPERIENCE?

VC: At present, we now have more advanced technologies, so the materials used to manufacture a product are getting more advanced as well. They get tougher and more wear-resistant. So, workpiece materials tend to be harder to cut, especially in industries like oil and gas and aerospace; they have titanium, Inconel and other superalloys. Also, we usually hear people saying they still don’t understand a lot about bandsaws. They always think that bandsaws are just simple pieces of band that cuts materials. We are here to educate users the right way to maximize their sawing operations.

READ: Bringing Bandsawing Into The Modern Age

HOW DO YOU HELP CUSTOMERS ADDRESS THESE ISSUES?

VC: It’s not as technical as compared to cutting tools. We already have products that are suitable for cutting superalloy materials. Besides provide the right cutting parameters; to understand further their sawing operation, we would arrange appointments to learn more and gathered details information from machine type, workpiece materials and sizes as well as other requirements so we could further assist their operation.

WORKING CLOSELY WITH YOUR CUSTOMERS IS A VERY BIG FACTOR TO SUCCESS.

VC: Yes, and also with distributors, because they are the frontliners. We don’t do direct sales. Most of the bandsaw manufacturers appoint distributors, they are the frontline. They go out to do the selling and servicing . How we support them is by constantly doing joint visits with them, as well as updating their training to improve their technical competency. The more I get involve in the market, the more we could understand the market demands.

DO YOU HAVE ANY FINAL COMMENTS?

VC: In the future, I would believe that companies from China would be a very strong competitor to those forerunners because bi-metal bandsaw is not a sophisticated technological advance product. It is more about customer service. I am sure that we would be strong globally moving forward, because we have a team of global sales that understands. Bichamp believes in investing in the right people.

 

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Laser Cutting Technology: Why Choose It?

MVTec Expands Distributor Network in Southeast Asia

Sustainable Manufacturing Thanks To Fiber Lasers And Automation

Hypertherm: FlushCut Consumables

RS Components Discuses Metalworking Industry Trends

Mazak: Addressing Labour Issues Through Machine Intelligence and Automation

Flexible Gripping Delivers the Future of Automation Today

Heller Discusses Advantages of HMCs

Asia Set for a Rebound in 2020

Hexagon Discusses Opportunities For Growth In Philippine Metrology Market

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Six Factors That Have Changed Bending Automation

Six Factors That Have Changed Bending Automation

In this article, Steven Lucas of LVD highlights the key factors that have changed bending automation.

Today’s bending automation software has considerable intelligence built in. Depending on the software, the operator can create and simulate 3D-designs.

The landscape has changed for robotic press brake bending. Advances in machine, software and robot technology have made bending automation more practical for a broader range of fabricators across Asia Pacific as they look for ways to optimize workflow, shorten turnaround time and lower their per-piece cost.

Just a decade ago, bending automation meant a significant investment—in the cost of the automation and in the support required to realize an efficient and consistent bending process. Six key factors have changed bending automation:

  1. Offline Programming

Today’s programming software for robotic bending is more powerful and much easier to use than the software of 10 years ago. This has resulted in simplified CAM program preparation, creating robot trajectories, machine setup and operation. Programming a robotic press brake can be handled completely offline with no need to physically teach the machine setup or bending of the first part.  In contrast, in some automated press brake operations, robot teaching required approximately one hour per bend. This eliminates considerable downtime and ensures that the throughput of the bending cell is not interrupted. The software automatically generates the robot’s movement, directing it from one bend to the next to form the part and then to offload or stack the part. The software is able to calculate a complete collision-free path – generating the robot’s trajectory through all positions.

More than programming the robot, software with CAM 3D virtual production simulation capability provides a complete walk through of the robot and press brake functions so the user can check and visually confirm the bending sequence before bending begins. Before a piece of metal is formed, the process is verified, avoiding costly mistakes and material waste.

  1. Flexible Robot Gripper

An example of a bending cell that permits both robot and manual operation for greater flexibility.

The robot gripper is a critical component of a robotic system. Gripper designs of the past did not have the flexibility to accommodate the many part geometries of bending. That meant investing in a number of different grippers to handle different part geometries and taking the time for gripper changeover, which could involve multiple changeovers per part.  New gripper designs are much more adaptable. The gripper in Figure 1 is a patent-pending universal design that fits part sizes from 30×100 mm up to 350×500 mm and handles a maximum part weight of 3 kg. This adaptive design enables the user to process a series of different geometries without having to change the gripper. It’s possible to make bends on three different sides of a part without regripping. Use of a universal gripper not only saves on investment cost but also saves costly change over times between grippers, keeping production continuous and uninterrupted.

  1. Capable Industrial Robot

The use of industrial robots worldwide is on the rise. The International Federation of Robotics estimates the supply of robots to be 521,000 units in 2020, more than doubled in just five years. While the automotive and electronics industries are the leading users of robots, the metals industry is a growing application.

Robots themselves have also improved in terms of capacity and reliability. One of the world’s leading robot manufacturers offers more than 100 industrial robots with a payload from 3 kg up to 2.3 tons and maximum reaches up to 4.7 m.

  1. Fast “Art to Part”

This universal gripper (patent-pending design) makes it possible to bend on three different sides of a part without regripping.

Another advance in robotic bending is a faster design to part process. The press brake bending cell in Figure 3 takes 10 min for CAM generation of the bending and robot program, and 10 min for set-up and first part generation—a total of 20 min from “art” to “part.” That’s a result of the tight integration between the press brake and robot, and easy to use, intuitive software.

  1. Better Process Control

Real-time in-process angle measurement technology adds advanced process consistency to robotic press brake bending. An angle monitoring system can adapt the punch position to ensure precise, consistent bending. In the system pictured,

digital information is transmitted in real time to the CNC control unit, which

processes it and immediately adjusts the position of the punch to achieve the

correct angle. The bending process is not interrupted and no production time is lost. This technology allows the machine to adapt to material variations, including sheet thickness, strain hardening and grain direction, automatically compensating for any changes.

  1. More Affordability

In the past, fabricators have tended to “over automate.” Despite advances in function and flexibility, a robotic bending cell still represents a sizable investment. In order to generate a healthy ROI, it’s important to ensure that the ratio of the cost of the automation is not more than twice the cost of the stand-alone machine. Getting this ratio right keeps the direct cost of the part at a sensible level—the direct part cost is not “loaded”—and the user does not need large volumes to make the process cost-effective.

Also, worth considering is the versatility of the system. A bending cell that has the flexibility to operate in stand-alone mode when batch sizes are too small to benefit from robot automation will be more productive and profitable and, therefore, easier to justify. In this scenario, the user can operate the robotic bending cell lights-out overnight or after-hours and during normal business hours, can choose to work in either mode (with the robot or with the robot parked). In the bending cell shown (Figures 5 and 6), programming is handled with 3D bending software so that the same program can be used for bending with the robot or for manual bending.

 

Is Bending Automation Right for You?

What jobs are best for a robot? Surprisingly, it’s a fairly broad range of applications, including high-volume repeat jobs, low-volume jobs that are reoccurring, and jobs that are heavy duty. The flexibility of today’s bending automation technology makes it possible to run a variety of bending jobs profitably.

New bending automation products, such as LVD’s Dyna-Cell, eliminate the need to teach the robot, which greatly simplifies robotic bending. Current bending cell designs are also much more affordable than past models, both in the cost of the press brake and robot and the cost of operation and maintenance of the cell.

In the Asia Pacific region, as manufacturers are encouraged to adopt automation and Industry 4.0 initiatives through government loans and grants, bending automation offers fabricators a way to address issues such as shortage of labour, higher cost of wages and quality control. If you think bending automation may be your solution, it’s best to consult with your equipment supplier.

 

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Renishaw Shares Outlook On Vietnam And Philippines

OnRobot Launches VGC10 Compact—A Highly Customisable Electric Vacuum Gripper

Collaborative Robot Market To Exceed US$11 Billion By 2030

OnRobot One-System Solution Takes Robot Compatibility to the Next Level

Outlook for Global Robot End-Effector Market

Airbus Commits To Continued Automation Of Its Manufacturing Line

VinFast Deploys Siemens’ Full Portfolio To Deliver Cars Ahead Of Schedule

Space Industry Will Triple In Size To US$1.1 Trillion By 2040

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Plate Roll Technology Addresses Wind Tower Manufacturing Challenges

Plate Roll Technology Addresses Wind Tower Manufacturing Challenges

Here’s how one company addressed the challenges of wind tower manufacturing. Article by Stefano Santoni, DAVI Promau.

MAM Maschinen, part of the ENERCON Group, processes more than 33,000 tons of steel per year. Employing around 300 people, MAM Maschinen is currently one of the most relevant players for the fabrication of heavy-duty components for several industrial sectors, in particular, wind towers and steel bridges.

In line with the trend towards higher efficiency in manufacturing, MAM has been improving its degree of automation as well as internal know-how to provide the highest quality products to their customers with the maximum respect for the environment.

In this framework, MAM Maschinen became in need of a plate roll technology partner that could support their serial and intensive production of wind tower sections. Evaluating different plate roll manufacturers, the company aimed at identifying the optimum technology in terms of performance, repeatability, and reliability to comply with the strict tolerances imposed by the end-users.

“From the initial contact in 2017 to the final purchase, dealing with DAVI has been satisfying in every respect,” says Andreas Kühn, Innovation Leader at MAM Maschinen. “The negotiation with the company was fair and they managed to meet our requirements. Now, we are happy with the machine that is working properly and quick. We are carrying on the foreseen works on our DAVI plate roll that entered our production flow, making it smoother and with no issues caused.”

MAM Maschinen selected a four-roll plate rolling machine with a capacity of 3,000 x 96 mm, equipped with dedicated accessories for the highest level of flexibility. The DAVI machine now constitutes a major fabrication asset to MAM, being utilized to roll wind tower sections as well as other components for the mechanical industry, in general.

 

Leveraging 50 Years of Experience and Know how

With over 50 years of experience in delivering high quality three- and four-roll rolling machines, DAVI’s R&D developed high-value patents deployed in unique product lines specifically designed for the wind energy industry. DAVI also developed a proprietary Wind Energy control system capable of providing full automation as required by the Industry 4.0 standards.

DAVI’s High Productivity Line introduced to the market innovative CNC-controlled features such as the possibility of executing exacts first pre-bending at the beginning of the rolling process, thanks to the patented infeed lifting conveyor. By lifting together with the bending rolls, the conveyor supports the plate while pre-bending, completely eliminating the distortions which would otherwise occur due to counter bending forces generated by the plate own weight.

While rolling large diameter workpieces, the front edge would “close” under its own weight and adjustment operations would be needed in order to avoid overlapping with the trailing edge. As part of the High Productivity Line, DAVI’s patented pushers with hooking fingers installed on the lateral supports completely eliminate the risk of overlapping as well as allow for perfect positioning and alignment of the two plate edges at the end of the rolling process in preparation for on-machine tack welding. The two features combined can increase the operation speed by 25%/30% (compared to manual process).

 

Addressing the Cone Forming Challenge

Cone forming is recognized as the most challenging rolling process. Forcing the plate edges to travel at two different speeds, the process generates high stress on the rolling machine as well as on the plate itself. On a typical wind cone application, it is of paramount importance to protect the integrity of the bevels, which must be realized prior the rolling process (due to high costs involved in beveling the plate after it is formed into a cone or can). For this reason, the state-of-the-art Wind Towers & Foundations cone rolling involves a step-by-step forming process where, at each step, the plate must be repositioned in order to make sure that the cone generatrix overlaps the top roll axis. Depending on accessories installed, this repositioning would both take a very long time, deplete the final workpiece tolerances and potentially put the operators at risk

DAVI responded to the industry needs by introducing a ground-breaking fully automated cone forming system. This is achieved by positioning and guiding the plate while cone forming without damaging the bevels (wide contact surface) for plates up to 100mm. This system allows for a complete cone forming executed by a single operator, with maximum repeatability, highest accuracy and the shortest possible floor-to-floor time (30 percent–50 percent faster compared to manual process).

The whole process—consisting of plate positioning, squaring, pre-bending, rolling and aligning for tack-welding—can be completed in less than 20 minutes, even for high-thickness plates.

“The positive experience we are having with DAVI leads me to believe that, for future needs, we will certainly make contact with them again. The plate roll shows a high quality and an impressive mechanical stability. A relevant aspect we really appreciated about DAVI was the customer support we can receive in our own language, that made the troubleshooting easier and faster. The aftersales care we received from DAVI is really appreciated,” says Kühn.

 

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

KASTO Enable Meticulous Sawing Of Additively-manufactured Components

India & Spain Announce Plans For Rapid Rail Cooperation

TRUMPF To Unveil Automated Mass 3D Printing Solution At Formnext 2019

 

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

  • 1
  • 2
Back To Top