skip to Main Content
The Role Of Machine Vision In IIot

The Role Of Machine Vision In IIot

The Industrial Internet of Things will profoundly change automated production processes. How do machine vision technologies help to cope with these challenges? By Dr Maximilian Lückenhaus, director, marketing and sales, MVTec Software 

The Industrial Internet of Things (IIoT, aka Industry 4.0) stands for the digital networking of humans, objects, and systems to create integrated production processes.

In this context, industrial companies have to cope with several new trends that will fundamentally change production and logistics processes. The IIoT means that all technologies, systems, and components that are involved in the industrial value creation process are connected to each other as well as to company networks and the Internet.

Another important trend in this connection is the smart factory. It refers to a manufacturing environment in which machines, installations, and logistics systems interact independently, without human influence. Here, all systems involved communicate through an integrated network connected to the IIoT.

Automated Automotive

Robotics plays a very important role in the smart factory and IIoT environments. The 2015 World Robot Statistics from the International Federation of Robotics illustrates this fact. The survey expects that around 1.3 million industrial robots will be in use worldwide by 2018. The current global market value of robot systems is US$32 billion across all industries.

Robotics is very strong in the automotive industry. In this sector, investments increased by 43 percent from 2013 to 2014. Robots are particularly well represented in the manufacturing industry. An average of 66 robotic units come to 10,000 workers worldwide. South Korea is the world leader in automating processes using industrial robots, followed by Japan and Germany. The USA takes seventh place, and China ranks 28th.

Cobots Work Closely

There is a current trend within the robotics segment: A new generation of smaller, lighter, and more compact industrial robots are finding their way into the automation and manufacturing industry.

These collaborative robots, called cobots, work very closely with human staff. They often possess one or two arms and sometimes even a head. Besides, they are much cheaper than large stationary five-axis robots. Owing to their light weight, they can also be used as mobile units. The robots can take over further tasks such as supporting their human colleagues or even replacing them when they get sick.

There is a technology which plays a key role in accompanying the new production trends and supporting the further development of automated processes: Machine vision, which has grown by leaps and bounds in the past few years.

The technology uses image acquisition devices, such as high-resolution cameras and sensors. These devices record the production processes from different perspectives and generate digital image data. Special machine vision software is used to process this data. The technology makes it possible to monitor all manufacturing processes and to identify weak spots and optimisation potential.

Another benefit: The technology is very fast. Algorithms process the digital image data in milliseconds, thus paving the way for real-time applications. Besides, machine vision facilitates very robust identification processes and a high detection rate.

Creating Machine Vision Applications

Machine vision technology makes the interaction between humans and the new generation of robots much more efficient. Most of the new industrial robots are already equipped with one or more cameras and integrated machine vision functions. The robots should be prepared rapidly and flexible for different application scenarios—without long training of the various tasks and without cumbersome set-up processes.

In addition, it is essential to easily create machine vision applications. Software such as MVTec’s Merlic can be used, for example. The software’s central element is an image-centric user interface, which guides the user through the application. While conventional programming tools work with complex codes, command- and parameter lists, users benefit from an easy-to-read visual display, similar to a “what you see is what you get” editor.

Moreover, the software also contains a collection of standard vision tools such as image acquisition, calibration, alignment, matching, measuring, counting, checking, reading, position determination, and defect detection.

An integrated feature called easyTouch is able to detect, highlight, and select objects with a single click by simply moving the mouse cursor over an image. This means that configuration of complex parameters is no longer needed, thus saving time and money during the development process. Therefore, employees without in-depth programming experience or image processing knowledge are able to create comprehensive machine vision applications. It is no longer necessary to write a completely new program for each new task.

Optimising The Industrial Value Chain

Machine vision streamlines numerous processes in the industrial value chain. For instance, it precisely detects objects in manufacturing processes, identifies the exact position of workpieces, and finds the optimum alignment for the same. Thus, robots can accurately grasp and process any kind of object. As a result, safety and efficiency in automated production processes will rise significantly.

Two-dimensional processes have so far been the standard method in this area. In this way solely the position of horizontally moving objects (such as on a conveyor belt) can be determined. However, 2D methods cannot identify three-dimensionally acting objects such as interacting cobots. Therefore, the 2D technology is only restrictedly suitable for highly automated production scenarios.

Three-dimensional vision technologies fit better with such scenarios. The method is integrated into the machine vision software, uses a multiple camera setup: Several cameras positioned in various locations view production processes from different perspectives.

As a result, a three-dimensional movement profile is generated. This determines not just the accurate position of objects, but also their movements in three-dimensional space and their speed. The 3D technology optimises robot-supported, highly automated manufacturing processes. The collaboration between humans and machines will become more efficient and safer. For instance, the technology can exactly determine the movement direction of mobile robots that are moving independently through factory buildings, avoiding potential collisions with humans or vehicles.

Efficient Interactions

There is another benefit: The 3D technology is able to optimise the work of stationary and large five-axis robots used for welding and other assembly processes. For example, in the automotive industry these robots operate in separate areas that are inaccessible to human staff. If a person nevertheless steps over a certain line, sensors will stop the robot to ensure that the employee is not hurt.

Valuable time goes by before the robot starts up again, which leads to expensive interruptions in production processes. Using the innovative 3D technology, these processes now become much safer and efficient. The three-dimensional movement profile precisely determines the action radius of the robot. In this way, imminent collisions with human beings are detected in time. Thus, the company can increase safety and additionally save costs, since the frequency of robot shutdowns can be reduced with the precise, three-dimensional monitoring of production processes.

Powerful machine vision technologies not only assist production processes but also optimise quality assurance within numerous industries. For instance, they can be used for the precise scanning and inspection of tool surfaces in the metal industry. The software can safely identify and automatically reject any defective parts before entering downstream process chains. Thanks to the high speed of the image processing systems, automated inspections of large batch sizes take less time.

Furthermore, the technology supports processes in the electronics industry: Machine vision can help safely identify and detect errors for many different components and electronic parts. In addition, packaging processes are optimised: The quantity of products in packages can now be reliably determined, ensuring completeness.

Integrated Logistics And Transfer Processes

Last but not least, logistics and transfer processes also benefit from machine vision software, particularly for communication between products and manufacturing equipment in modern IIoT- resp. Industry 4.0 scenarios. In this context, products contain all manufacturing information in machine-readable form, such as bar codes, QR codes, or color-coding.

Machine vision systems can accurately read this coded information—even with defective codes (such as overexposure, excessively narrow, blurry or partly occluded code bars). The product’s path through the production equipment and individual process steps can be controlled automatically using this data.

CHECK OUT THESE OTHER ARTICLES

Nissin Electric To Move Production From Thailand And Vietnam To Myanmar
Coherent Launches Turnkey Solution for Precision Metal Parts Welding
Voestalpine Invests US$59M In Expansion
One Technology—Many Benefits
Metal Removal? There’s A Robot For That!
Schmersal Group Establishes Subsidiary In Thailand
Dyson Terminates Electric Car Project In Singapore
Collaborative Robot Market To Exceed US$11 Billion By 2030
Trumpf Partners With BeSpoon To Boost IIoT Portfolio
Machine Vision Market To Reach US$18.24 Billion By 2025

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

Efficient Sawing In A Digitised Environment: Kasto Industry 4.0 Machinery And Equipment Are Key

Efficient Sawing In A Digitised Environment: Kasto Industry 4.0 Machinery And Equipment Are Key

The rise of new Digitised Environment industrial technology, referred to as “Industry 4.0”, is transforming the business models of distributors, manufacturing plants and service providers throughout the world, and Southeast Asia is no exception. By Armin Stolzer, owner and chief executive officer, Kasto Industry 4.0

Industry 4.0 Machines, goods, raw materials, load carriers, transport equipment and locations are no longer isolated; they are globally linked and interconnected by means of information networks. Production and logistics are merging, and the integration of processes is increasing. Handling tasks are becoming more and more automated. Digital technology controls the value chain from the producer of raw materials to the final customer.

This has created immense opportunities for companies Digitised Environment Machinery And Equipment Are Key, but it has also confronted them with new challenges. Competition is becoming more international and thus more intense. Only by standing out from the crowd and offering customers genuine value can a company stay competitive in the long run. At the same time, expectations in the market are increasing. Customers are demanding more and more different products, and these must be produced in smaller batches. Production must be fast, free of defects, flexible, inexpensive and reliable.

Speed, Versatility, Precision

In the metalworking industry, for example, sawing technology must meet increasingly tough requirements. Industry 4.0 Machines and tools must not only be fast and versatile, they must also produce cut parts with precise dimensions and surfaces of excellent quality. When the parts are burr-free and reproducibly precise, less work is required for reworking. This raises production efficiency.

Moreover, users want to minimise losses at the start and end of the cut and other kinds of waste in order to make optimum use of the material. For this, high-quality sawing technology tailored to the given requirements is indispensable. When it comes to cutting bar stock in the skilled trades, manufacturing and steel processing, further increases in efficiency and cost-effectiveness can be expected in the future. In each sector, the potential for improvement differs depending on the material, order structure, production volume and personnel costs.

In particular, metal sawing machines for various purposes have been significantly improved through technological progress, with notable increases in cutting performance. Moreover, material handling for sawing has been simplified, with shorter idle times, automation of the material supply and better removal of cut parts.

Automation Kasto Industry 4.0 In Sawing Technology

The Southeast Asian market therefore has a huge demand for innovative and high-quality sawing technology. Efforts are being stepped up in all industries to deploy networking and automation to rationalise production processes.

This is where sawing machine manufacturers can provide users with optimum support. Even the standard versions of many modern sawing machines offer a high level of automation and can be integrated without difficulty into a uniformly controlled materials flow.

This is also true of combined sawing and storage systems in which all the storage, handling, sawing, marking, palletising and bundling processes are performed fully automatically—from the entry of the raw material through to the commissioning of the cut parts. These tasks are increasingly carried out with the help of industrial robots. The requirements relating to performance, efficiency and flexibility are steadily increasing, and these are areas in which robot technology offers enormous potential.

When it comes to saw blades, carbide tools promise significantly improved performance in the machining of various materials. There have also been enhancements in ergonomics and design, including incorporation of strict safety standards.

An increasing division of tasks is arising between high-volume steel suppliers and manufacturers on the one hand and smaller metal-processing companies and manufacturers on the other. The latter need low-cost, universal sawing solutions to cover a broad range of sawing applications, while high-volume producers are investing in highly automated sawing facilities with the aim of cutting personnel costs and running their machinery for long hours without staff.

Carbide-tipped sawing tools are finding increasing use in high-volume production with band saws and circular saws because they considerably reduce sawing times.

Carbide Tools, Advanced Performance

To take full advantage of the increased performance offered by carbide tools, a machine must be massive, robust and optimised to prevent vibration. Thanks to its excellent damping properties, polymer concrete is often preferred to gray cast iron for this purpose.

Other important requirements include greater drive power with a corresponding drive design, modified cutting edge feed, protection of teeth when the blade is retracted and adequate chip removal. Today’s sawing machines also include advanced components for driving, guidance and sensors. More than in the past, it is now possible to provide low-cost, custom solutions by means of fully enclosed machines based on a modular design. Modern machine control systems make it easy for operators to enter engineering and job data.

Companies that do made-to-order sawing in small and medium-sized quantities are increasingly relying on sawing machines with carbide tools. On the feed side, these machines often have magazines or are connected to a sawing centre, allowing them to run fully unattended for long periods. In addition, the outfeed side is modified to cut back on manual sorting and palletising. Robot solutions are flexibly integrated into the machine design so that cut parts can easily be sorted and other machining steps like deburring, milling or centering can be added.

Lowering Cost Per Cut

From the broad range of modern sawing machines in various performance classes and automation levels, the perfect solution can be found for every application. Significant advances in sawing and tool technology have brought about substantial reductions in production times and idle times. Although the necessary high-end peripheral equipment can be more expensive, when applied under the right conditions it can significantly lower the cost per cut and raise overall productivity.

CHECK OUT THESE OTHER ARTICLES

The Future Of Manufacturing Lies In Transparency And Connectivity
Kasto: Kastowin Pro AC 5.6
MESCO: Driving Machining Technology Evolution
KASTO To Showcase Sawing, Storage Technology Innovations At EMO 2019
Mould Technology Solution Centre Groundbreaking Ceremony
LVD Discusses Punching Technology Advancements
A Guide to Machining Better Castings Through Optical Metrology
Improving Metal Cutting Productivity With A High-Powered Sawing Machine
Increasing Automation, Connectivity And Energy Efficiency In Metal Cutting
New Demands, New Solutions

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

Industry 4.0: Is The Italian Machine Tool Industry Ready For The Challenge

Industry 4.0: Is The Italian Machine Tool Industry Ready For The Challenge

With new technologies and new skills Industry 4.0, Marco Taisch explains how enterprises in Italy will adapt.

Marco Taisch, professor of operations management and advanced and sustainable manufacturing at the School of Management of the Politecnico di Milano (Polytechnic University of Milan), is committed at the forefront with regards to the issue of Industry 4.0 and of IoT application to the manufacturing industry.

Q: Industry 4.0 is also defined as the “fourth industrial revolution”. What is the real meaning of “revolution” in this case?

Marcho Taisch (MT): One of the most revolutionary aspects of Industry 4.0 is, first of all, the impact it has had on the Italian economic stage. In a very short time, this new approach allowed the brining of the manufacturing industry back to the centre of attention of Italian institutions and economic players with an explosive effect, to say the least.

As far as the definition is concerned, many people consider Industry 4.0 as a real revolution; others see it as a pronounced effect.

In my opinion, Industry 4.0 combines technological innovation, which materialises in the spread of IoT technologies within factories, with a deep organisation change. In other words, the real revolution is primarily cultural: processes, tasks, professional profiles are changing and so are the 
required skills.

Q: If professional profiles are changing, should fundamental training processes be updated?

MT: Of course. There are very good universities capable of offering appropriate training to young people, enabling them to enter the work market and become real resources for enterprises.

In any case, technological training is made not only in polytechnic universities and other kinds of universities. It is important that even technical institutes should work on programmes, so that they may be as close as possible to the requirements of the industry. The industry is dramatically accelerating its development through digitalisation.

Q: Let’s come back to technologies and to the impact of Industry 4.0 on the Italian industry.

MT: Italy is the second-largest manufacturing country in Europe. To maintain and, if possible, even to improve this position, it is necessary not only to pass through a generic traditional innovation, but on the contrary, there must be a process of factory digitalisation. The aim is to facilitate and support the spread of the enterprises’ connectivity.

In practise, this means the creation of smart manufacturing, such as the production of products and services with the support of information technologies, and the creation of new business models. This is an intense programme which can, however, definitely be sustained by the Italian enterprises — provided that in the approach to this issue our peculiarities are respected.

Q: Could you please elaborate?

MT: The Italian manufacturing industry is recognised worldwide for its quality and strong customisation of product offerings. However, the “Made in Italy” characterisation is missing and we must enhance the importance of this part.

As a country we can work towards a digitalised manufacturing industry for advanced design, where the leading role is played by people who must adequately be trained and updated. We must concentrate on this aspect.

On the other hand, in some sectors, for example that of machinery and production systems, there is already a lot of innovative technology related to Industry 4.0, at least partially. The challenge is to increase the connectivity level, for example that of machines, so that they can increasingly collect, treat, process and allow data sharing — 
even remotely.

Q: Are enterprises able to do this by themselves?

MT: Starting from the assumption that the innovation level is not homogeneous, it is reasonable to suppose that some companies need assistance. For this purpose, universities, professional associations, territorial and extra-territorial institutions have already taken active steps to provide “information” in a wider sense, with particular attention given to SMEs.

Q: What are the real opportunities for SMEs to get informed?

MT: In a situation of communication overload, there is no denying that it may become difficult to be oriented. However, I would stress that there are numerous opportunities to reasonably debate and closely verify the possible applications of the new Industry 4.0 approach also with regard to our industry. Relying on qualified people considerably simplifies the selection process.

What are the opportunities to get information? Meetings, collection of annotated, specific information material specific studies are all appropriate. Demonstration events are also suitable, but it has to be stressed that in order to be most effective, such events must be set in the context and thus studied according to the enterprises’ requirements.

Q: As you are professor of the Manufacturing Group in the School of Management at the Politecnico di Milano, could you illustrate the topics to which you are presently committed and how you are working?

MT: The Manufacturing Group is a work group composed of about 40 people dealing with the analysis of issues concerning planning and management of manufacturing systems and operations. A particular focus is on energy efficiency and sustainability in the manufacturing industry and in the industrial services, on product and asset life-cycle management.

Q: Can we consider demonstration events?

MT: Exhibitions are, first of all, events to do business, thus they are events that companies really need. If they are organised with particular attention and by qualified operators, exhibition events can be real opportunities for updating, understanding and analysing in-depth topics that are not yet well-known.

In Italy we have a lot of good trade shows, even regarding Industry 4.0. Among them,  there is Motion And Mechatronics, whose philosophy, in my opinion is certainly innovative, because it combines the business aspect with specific thematic insight.

The trade show is addressed both to those who work, plan and build within a factory as well as those who manage it. This concept convinced me to accept the appointment as leader of the Technical-Scientific Committee for the event.

Q: A last question: what are your expectations for the future of Industry 4.0?

MT: I am very confident, because I see a harmonic teamwork between institutions, associations, and the research world. Now, the ball is passed to companies. The Industry 4.0 plan is an excellent opportunity for enterprises to take advantage of it, who can understand that purchasing technology is not enough, and that it is necessary also to work on skills.

 

Rising Italian Machine Tool Industry For 2017

The Italian machine tool, robot and automation manufacturing industry closed the year 2016 positively on various economic indicators, said Italian Machine Tool, Robots, Automation Systems And Ancillary Products Manufacturers’ Association (UCIMU) president Massimo Carboniero. He added that the year 2017 looked to be a year of further growth.

As evidenced by the preliminary year’s data processed by the Studies Department and Business Culture of UCIMU, production in 2016 increased to 5.48 billion euros (US$5.91 billion), recording a five percent upturn versus the previous year.

Uptick In Domestic Market

A definite positive trend was reported with regard to the deliveries by the Italian manufacturers in the domestic market, grown to US$2.38 billion, a rise of 20.5 percent compared with the previous year.

On the other hand, export decreased by 3.3 percent, reaching only US$3.54 billion, due to the weakness experienced in some major destination markets.

Based on the Italian National Institute for Statistic’s data processing, in the first nine months of the year, the main countries for export was as follows:

Image01

Consumption showed a positive trend with a 10.1 percent increase totalling US$3.97 billion. It is the third consecutive year of double-digit growth, showing signs of the recovery of the Italian market, which has also started again to invest in production technologies.

“The year 2016 was positive for the Italian machine tool industry, which contributes to the national GDP for almost eight billion euros (US$8.63 billion) considering, besides the production of machine tools, also the production of parts, tools and numerical controls not included in the total Italian machine tools”, Mr Carboniero said.

Interest In 2017

The year 2017 will also be positive for the Italian industry of the sector: according to the forecasts, there will be a growth for all the main economic indicators.

Production is predicted to rise four percent to US$6.15 billion, closer to the record-breaking value of US$6.47 billion registered in 2008.

Exports are expected to grow by 1.7 percent to attain US$3.59 billion. The positive trend of consumption will also go on: it should rise by 6.9 percent to US$4.25 billion, driving the deliveries of manufacturers.

“Now, with the Italian Ministry of Economic Development’s Industry 4.0 Plan which was included in the already-approved Budget Law 2017, the Italian government has given the country a well-structured and comprehensive programme of industrial policy. With this plan, Italian enterprises can rely on a series of measures aimed at favouring the improvement of their competitiveness. These measures can further boost the consumption of machinery and innovative technologies for factory digitalisation,” Mr Carboniero said.

CHECK OUT THESE OTHER ARTICLES

Big Presence For Taiwan At EMO 2019
EMO Hannover 2019 Provides Clarity In Uncertain Times
Making Use of Big Data
Wenzel To Showcase Metrology Innovations at EMO 2019
Hwacheon on VMCs vs. HMCs
EMO Hannover 2019: Global Machine Tool Community Paving The Way For Industry 4.0
3D Systems And GF Machining Solutions Expand Partnership
Marposs Supports The DIGIMAN Project
EMO Hannover 2019 Boosting Investment Levels With Array Of New Technologies
Adapting Cutting Tools To Changing Trends

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

Back To Top