skip to Main Content
Where 3D Printing Makes Sense

Where 3D Printing Makes Sense

Where 3D Printing Makes Sense

Here’s a look at how Paul Horn GmbH got its start in additive manufacturing. 

Even complicated shapes can be produced relatively easily with 3D printing.

Paul Horn GmbH launched its additive manufacturing project in spring of 2018, which led to the creation of a dedicated “selective laser melting” production area. Now, the tool manufacturer uses additive manufacturing to produce its own tools—particularly prototypes, special tools and tool holders—and to optimise coolant attachments. Having recognised the advanced possibilities offered by additive manufacturing, Horn is making these available to its customers and partners as well.

“We were captivated by additive manufacturing right from the start, and so we kept a very close eye on advances in the area of 3D metal printing. As soon as the technology had matured to the point where we could use it to manufacture precision tools, we bought our very first system,” Matthias Rommel, Managing Director of Horn, explains. “Originally, we purchased the machine for the R&D area so that we could make special tools and prototypes. During the initial period, we found that we were constantly having discussions with our customers about 3D printing. To begin with, these were purely technical; but as time went by, they led to more and more concrete enquiries for 3D-printed components. Due to the strong interest from customers, we eventually came up with the idea of setting up an additional contract manufacturing business unit for additively manufactured components. In terms of technology, we opted for a DMG Mori LASERTEC 30 (2nd generation).”

It makes sense to use additive manufacturing if it generates a technological advantage. However, in many cases, there is no economic benefit to using additive manufacturing for a component that used to be produced by conventional methods. One example would be a turned part that can be produced relatively quickly on a Swiss-type lathe. Not only that, but additive manufacturing would also be too expensive in terms of post-processing. Other disadvantages compared to conventional production include relatively poor surface quality (Rz 30 µm), accuracies down to only ±0.1 mm, and the high cost of powder compared to bar. 

Greater Design Freedom

As the complexity of a component begins to rise, additive manufacturing becomes more relevant. This may be driven by the need for lightweight design, special cooling channel layouts and small batches of components with highly complex geometry. Consequently, the disadvantages have to be weighed against the benefits of greater design freedom, lightweight construction, quick adaptability and speedier production for more complex parts. In the future, it therefore makes sense for this option to be included in the preliminary considerations as part of each design process.

To continue reading this article, head on over to our Ebook!

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Metal 3D Printing Revolutionises Valve Design and Manufacturing

KUKA Webinar: Embracing Robotic Application In Boosting APEC Economic Performance

3D Scanning Prevents Production Downtimes

Global Steel Production Remains Stable

3D Printing And Counterfeit Automation Parts

Portable 3D Metrology: Combating Common Challenges in Large Parts and Assemblies

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

How 3D Printed Titanium Motor Nodes Became A Game-Changer In E-Bikes
SLM Technology Opportunities For Healthcare Applications
Back To Top