skip to Main Content
The Future Of 3D Printing: Additive Manufacturing Trends

The Future Of 3D Printing: Additive Manufacturing Trends

3D printing experts have given us their forecasts for the additive manufacturing trends to watch and also the future of 3D printing

Of course, 3D printing does not exist in a vacuum (except when it does). Figuratively speaking, additive manufacturing must be considered in relation to the bigger picture. Whether that is the immediate 3D printing ecosystem of materials, machines, and software or the wider world of technology, economic and social forces. 

Therefore, the final question we asked the industry leaders was what non-AM/3DP frontier technology do you see as the most significant for the coming decade and why?

All extruder, no filament?

As noted in earlier articles, there is a tendency to bristle against marketing terminology. However consider how earlier terms such as the Internet or the Cloud proved useful in crystallizing a vision and differentiating such technologies from the earlier physical, and digital, elements they were formed from. 

Extending this to today’s buzzwords, will Decentralized Autonomous Organizations, Web3, the Metaverse, or Non-Fungible Tokens advance beyond their initial manifestations? 

Alternatively, and to coin a phrase, are some of these technologies all extruder and no filament?

The AI’s have it

The responses reveal an industry optimistic about the future and the role of technology within it. The second most mentioned theme was a concern for the climate and how technology can be harnessed to address net-zero goals for carbon. Within this theme, the experts discuss renewable energy such as hydrogen, energy storage including solid-state batteries and recycling, and electric vehicles. 

Also featuring prominently was the use of advanced visualization and collaborative tools, specifically Augmented Reality (AR) and Virtual Reality (VR). How (and if) the Metaverse comes to be manifested for the mainstream user remains to be seen. Will Zuckerberg’s Facebook mutate into Neal Stephenson’s Global Multimedia Protocol Group, or will the currently cumbersome nature continue to deter wider adoption?

Data and the software needed to generate useful information or applications are considered by the experts, whether in manufacturing execution systems, the digital thread, the digital marketplace, or big data. Receiving fewer mentions were distributed ledger technologies and FinTech – here NFT’s, decentralized networks and blockchain-based systems were on the expert’s radar – but of note to fewer respondees. Likewise, while fascinating topics, synthetic biology, and materials received only a couple of mentions. 

But the most frequently cited technology, mentioned by a quarter of our experts, was Artificial Intelligence (AI) and Machine Learning (ML). 

McKinsey’s most recent State of AI report shows service operations, product and service development, and marketing and sales as the top three areas where AI is currently applied. Our respondents look towards enhanced generative design tools and cloud-based intelligent systems underpinning the future of advanced manufacturing. 

Dr. Jeffrey Graves, President & CEO, 3D Systems

We’re seeing machine learning/artificial intelligence playing a more important role in additive manufacturing – powering software that is underlying the entire manufacturing workflow. Not only is machine learning optimizing organizations’ use of 3D printing, but it is also optimizing other advanced manufacturing technologies, including robotic welding, machining, finishing, and inspection operations, in full production environments. While this technology is playing an important role within our industry, I believe it will play a significant role more broadly within society over the coming decade.

We’re already seeing how cloud-based intelligent systems are making our lives easier, and more efficient. If we’re ordering take-out through an app, or a ride via one of the well-known rideshare services, machine learning/AI is already playing a role. We’re also seeing this technology’s influence in healthcare, whereby virtual visits with a physician are removing the need to take time out of our busy schedules to physically drive to a medical office. Instead, we can request a virtual appointment, and through the power of our laptop or smart device, from the comfort of our own homes, both patient and physician can discuss and assess symptoms for the physician to render a diagnosis and prescribe a treatment. Over the coming decade, I think we’ll see the role of machine learning continue on its upward trajectory, influencing in a greater way how we interact with one another and closing the physical gap to bring society virtually closer. 

Didier Deltort, President, HP Personalization & 3D Printing Business

Beyond additive manufacturing and 3D printing, mixed reality (MR) will fast become a significant technology within the industry, and over the next decade will become the norm for customer service support. With the exponential rise in digital manufacturing fueling the industry, customers have less time for service calls and higher production runs to meet, therefore the way in which companies deliver services in this ever-evolving business and work environment needs to change fast. MR can do just that, providing real-time support that can guide PSPs through troubleshooting as they work, ensuring self-sufficiency and smoother operations around the clock.

In this context, HP has partnered with Microsoft to launch the first-ever industry mixed reality service – HP xRServices. The collaboration will see HP xRServices and Microsoft HoloLens 2 create a virtual-real world combination in which customers can connect with HP engineers in a split second through mixed reality, advising them on any issue, at any point of their print production. Wearing the Microsoft HoloLens 2 headset and supported by HP xRServices solution, users will get the feeling of being physically present with a virtual coach on hand to guide them through the process, meaning no time wasted on long service calls, resolutions are swift and press downtime is kept minimal.

More Expert Forecasts:https://3dprintingindustry.com/news/the-future-of-technology-3d-printing-experts-on-the-frontier-203637/

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

Letter to the Editor
Do you have an opinion about this story? Do you have some thoughts you’d like to share with our readers? APMEN News would love to hear from you!
Email your letter to the Editorial Team at [email protected]

New Battery Bracket With Thermoplastic Composite Design

New Battery Bracket With Thermoplastic Composite Design

The Tepex continuous-fibre-reinforced thermoplastic composites from Lanxess are also ideal for the production of structural components that form part of driver assistance systems. One such example is a bracket for a battery that supplies electricity to the highly automated driver assistance system “Intelligent Drive” in the Mercedes-Benz S-Class in the event of a sudden power failure. The bow-shaped bracket is made by Poeppelmann Kunststoff-Technik GmbH & Co. KG located in Lohne, Germany, on the basis of the polypropylene-based Tepex dynalite 104-RGUD600(4)/47%.

The manufacturing method is a two-stage process combining forming (draping) of the composite with injection moulding. “The composite design means that the finished product can be as much as 40 percent lighter than a version made from metal,” says Joachim Schrapp, an expert in lightweight design at Poeppelmann. “The injection moulding step also enables functions to be integrated that not only make it much easier to install the bracket but also cut down on the logistical workload. All this has a beneficial effect on manufacturing costs.”

The composite design means that the finished product can be as much as 40 percent lighter than a version made from metal. Photo: Lanxess

The composite design means that the finished product can be as much as 40 percent lighter than a version made from metal. Photo: Lanxess

Optimized distribution of forces

The bracket’s job is to hold the battery – which weighs around 10 kilograms – firmly in place in the rear compartment of the vehicle by clamping alone, even when subjected to the considerable acceleration forces that occur in a collision. The bracket is designed to ensure that most of the forces are transferred from the points of application via the continuous glass fibres of the composite material. This makes the most of the excellent strength and stiffness provided by the Tepex blank. “The advantage of our composite is that, unlike fibre-reinforced injection-moulded compounds, for example, it does not suffer creep under high sustained stresses and therefore does not deform. This ensures that the battery is held in place permanently,” says Philipp Maas, sales & project manager for Tepex at Lanxess. The blank also boasts a high degree of fatigue strength, which ensures that the material does not become brittle and crack over time as a result of frequent or heavy vibrations such as those caused by potholes. 

Control units clipped in

The functions integrated into the bracket during the injection moulding stage include guides for cables as well as mounts and fasteners for two control units. Schrapp: “These two pieces of equipment are simply clipped into place during installation, so you don’t have to spend time screwing them in.” 

A strong material bond

The polypropylene matrix of the Tepex material is reinforced with four layers of continuous glass fibres, most of them arranged in one direction. The injection-moulded compound, which is reinforced with short glass fibres, is also polypropylene-based. “Since the bonding matrix and the injection-moulded material match, this creates a very strong bond between them. Coupled with the high specific stiffness of the composite, this leads to gains in both strength and stiffness,” says Maas. 

Corrosion-resistant and electrically insulating

Another benefit of the composite semi-finished product is that it is resistant to corrosion, which makes transportation and storage easier than would be the case for metal coils. The electrical characteristics of the structural material also play a key role. “It is electrically insulating to the body and the metal components of the battery, which significantly reduces the risk of short circuits. A component made from metal, however, would require additional measures to protect against short circuits,” says Schrapp. 

MORE INFORMATIONwww.lanxess.com
SOURCE_https://www.jeccomposites.com/news/lightweight-bracket-for-firm-clamping/
What You Missed:

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

CONNECT WITH US:  LinkedIn, Facebook, Twitter

Letter to the Editor
Do you have an opinion about this story? Do you have some thoughts you’d like to share with our readers? APMEN News would love to hear from you!
Email your letter to the Editorial Team at [email protected]

Back To Top